Reference: Lin SS, et al. (2001) Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. J Biol Chem 276(38):36000-7

Reference Help

Abstract


A relationship between life span and cellular glucose metabolism has been inferred from genetic manipulations and caloric restriction of model organisms. In this report, we have used the Snf1p glucose-sensing pathway of Saccharomyces cerevisiae to explore the genetic and biochemical linkages between glucose metabolism and aging. Snf1p is a serine/threonine kinase that regulates cellular responses to glucose deprivation. Loss of Snf4p, an activator of Snf1p, extends generational life span whereas loss of Sip2p, a presumed repressor of the kinase, causes an accelerated aging phenotype. An annotated data base of global age-associated changes in gene expression in isogenic wild-type, sip2Delta, and snf4Delta strains was generated from DNA microarray studies. The transcriptional responses suggested that gluconeogenesis and glucose storage increase as wild-type cells age, that this metabolic evolution is exaggerated in rapidly aging sip2Delta cells, and that it is attenuated in longer-lived snf4Delta cells. To test this hypothesis directly, we applied microanalytic biochemical methods to generation-matched cells from each strain and measured the activities of enzymes and concentrations of metabolites in the gluconeogenic, glycolytic, and glyoxylate pathways, as well as glycogen, ATP, and NAD(+). The sensitivity of the assays allowed comprehensive biochemical profiling to be performed using aliquots of the same cell populations employed for the transcriptional profiling. The results provided additional evidence that aging in S. cerevisiae is associated with a shift away from glycolysis and toward gluconeogenesis and energy storage. They also disclosed that this shift is forestalled by two manipulations that extend life span, caloric restriction and genetic attenuation of the normal age-associated increase in Snf1p activity. Together, these findings indicate that Snf1p activation is not only a marker of aging but also a candidate mediator, because a shift toward energy storage over expenditure could impact myriad aspects of cellular maintenance and repair.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Lin SS, Manchester JK, Gordon JI
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference