Reference: Graham RW, et al. (1989) UbiA, the major polyubiquitin locus in Caenorhabditis elegans, has unusual structural features and is constitutively expressed. Mol Cell Biol 9(1):268-77

Reference Help

Abstract


Ubiquitin is a multifunctional 76-amino-acid protein which plays critical roles in many aspects of cellular metabolism. In Caenorhabditis elegans, the major source of ubiquitin RNA is the polyubiquitin locus, UbiA. UbiA is transcribed as a polycistronic mRNA which contains 11 tandem repeats of ubiquitin sequence and possesses a 2-amino-acid carboxy-terminal extension on the final repeat. The UbiA locus possesses several unusual features not seen in the ubiquitin genes of other organisms studied to date. Mature UbiA mRNA acquires a 22-nucleotide leader sequence via a trans-splicing reaction involving a 100-nucleotide splice leader RNA derived from a different chromosome. UbiA is also unique among known polyubiquitin genes in containing four cis-spliced introns within its coding sequence. Thus, UbiA is one of a small class of genes found in higher eucaryotes whose heterogeneous nuclear RNA undergoes both cis and trans splicing. The putative promoter region of UbiA contains a number of potential regulatory elements: (i) a cytosine-rich block, (ii) two sequences resembling the heat shock regulatory element, and (iii) a palindromic sequence with homology to the DNA-binding site of the mammalian steroid hormone receptor. The expression of the UbiA gene has been studied under various heat shock conditions and has been monitored during larval moulting and throughout the major stages of development. These studies indicate that the expression of the UbiA gene is not inducible by acute or chronic heat shock and does not appear to be under nutritional or developmental regulation in C. elegans.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Graham RW, Jones D, Candido EP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference