Take our Survey

Reference: Zobel-Thropp P, et al. (2000) A novel post-translational modification of yeast elongation factor 1A. Methylesterification at the C terminus. J Biol Chem 275(47):37150-8

Reference Help

Abstract


Protein methylation reactions can play important roles in cell physiology. After labeling intact Saccharomyces cerevisiae cells with S-adenosyl-l-[methyl-(3)H]methionine, we identified a major methylated 49-kDa polypeptide containing [(3)H]methyl groups in two distinct types of linkages. Peptide sequence analysis of the purified methylated protein revealed that it is eukaryotic elongation factor 1A (eEF1A, formerly EF-1alpha), the protein that forms a complex with GTP and aminoacyl-tRNAs for binding to the ribosomal A site during protein translation. Previous studies have shown that eEF1A is methylated on several internal lysine residues to give mono-, di-, and tri-N-epsilon-methyl-lysine derivatives. We confirm this finding but also detect methylation that is released as volatile methyl groups after base hydrolysis, characteristic of ester linkages. In cycloheximide-treated cells, methyl esterified eEF1A was detected largely in the ribosome and polysome fractions; little or no methylated protein was found in the soluble fraction. Because the base-labile, volatile [methyl-(3)H]radioactivity of eEF1A could be released by trypsin treatment but not by carboxypeptidase Y or chymotrypsin treatment, we suggest that the methyl ester is present on the alpha-carboxyl group of its C-terminal lysine residue. From the results of pulse-chase experiments using radiolabeled intact yeast cells, we find that the N-methylated lysine residues of eEF1A are stable over 4 h, whereas the eEF1A carboxyl methyl ester has a half-life of less than 10 min. The rapid turnover of the methyl ester suggests that the methylation/demethylation of eEF1A at the C-terminal carboxyl group may represent a novel mode of regulation of the activity of this protein in yeast.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Zobel-Thropp P, Yang MC, Machado L, Clarke S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference