Reference: Stargell LA, et al. (2000) TFIIA has activator-dependent and core promoter functions in vivo. J Biol Chem 275(17):12374-80

Reference Help

Abstract

The physiological role of TFIIA was investigated by analyzing transcription in a yeast strain that contains a TATA-binding protein (TBP) mutant (N2-1) defective for interacting with TFIIA. In cells containing N2-1, transcription from a set of artificial his3 promoters dependent on different activators is generally reduced by a similar extent, indicating that TFIIA function is largely nonselective for activators. In addition, TATA element utilization, a core promoter function, is altered at his3 promoters dependent on weak activators. Genomic expression analysis reveals that 3% of the genes are preferentially affected by a factor of 4 or more. Chimeras of affected promoters indicate that the sensitivity to the TFIIA-TBP interaction can map either to the upstream or core promoter region. Unlike wild-type TBP or TFIIA, the N2-1 derivative does not activate transcription when artificially recruited to the promoter via a heterologous DNA binding domain, indicating that TFIIA is important for transcription even in the absence of an activation domain. Taken together, these results suggest that TFIIA plays an important role in both activator-dependent and core promoter functions in vivo. Further, they suggest that TFIIA function may not be strictly related to the recruitment of TBP to promoters but may also involve a step after TBP recruitment.

Reference Type
Journal Article
Authors
Stargell LA, Moqtaderi Z, Dorris DR, Ogg RC, Struhl K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference