Reference: Phillips JC, et al. (1984) A proposal for the metal geometry in yeast superoxide dismutase based on results from EXAFS spectroscopy. J Inorg Biochem 22(3):179-86

Reference Help

Abstract


Extended x-ray absorption fine structure (EXAFS) spectra have been recorded at the Cu edge and Zn edge in native yeast superoxide dismutase and at the Cu edge and Cd edge in the yeast superoxide dismutase derivative, where Zn has been substituted with Cd. Two different metal ligand distances in the range 1.9-2.0 A and 2.3-2.4 are determined for the Cu and Zn metals. For Cd in the Zn site two different metal ligand distances about 2.2 A and 2.6 A, respectively, were found. The striking feature is the similarity between the amplitude and radii determined for both the Cu and Zn sites. The increased distances for Cd can be explained by the increased ionic radius of Cd relative to Cu and Zn. Based on these EXAFS results and other relevant knowledge about the metal geometries, we propose that histidine 61 (63) positioned between the Cu and Zn metals are in one subunit bound to Zn and in the other to Cu. This model explains the recently observed difference between the two metal sites in each subunit.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Phillips JC, Bauer R, Dunbar J, Johansen JT
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference