Reference: Fu H, et al. (1999) Structural and functional analysis of the six regulatory particle triple-A ATPase subunits from the Arabidopsis 26S proteasome. Plant J 18(5):529-39

Reference Help

Abstract


The 26S proteasome is a multi-subunit ATP-dependent protease responsible for degrading most short-lived intracellular proteins targeted for breakdown by ubiquitin conjugation. The complex is composed of two relatively stable subparticles, the 20S proteasome, a hollow cylindrical structure which contains the proteolytic active sites in its lumen, and the 19S regulatory particle (RP) which binds to either end of the cylinder and provides the ATP-dependence and the specificity for ubiquitinated proteins. Among the approximately 18 subunits of the RP from yeast and animals are a set of six proteins, designated RPT1-6 for regulatory particle triple-A ATPase, that form a distinct family within the AAA superfamily. Presumably, these subunits use ATP hydrolysis to help assemble the 26S holocomplex, recognize and unfold appropriate substrates, and/or translocate the substrates to the 20S complex for degradation. Here, we describe the RPT gene family from Arabidopsis thaliana. From a collection of cDNAs and genomic sequences, a family of genes encoding all six of the RPT subunits was identified with significant amino acid sequence similarity to their yeast and animal counterparts. Five of the six RPT sub- units are encoded by two genes; the exception being RPT3 which is encoded by a single gene. mRNA for each of the six proteins is present in all tissue types examined. Five of the subunits (RPT1 and 3-6) complemented yeast mutants missing their respective orthologs, indicating that the yeast and Arabidopsis proteins are functionally equivalent. Taken together, these results demonstrate that the RP, like the 20S proteasome, is functionally and structurally conserved among eukaryotes and indicate that the plant RPT subunits, like their yeast counterparts, have non-redundant functions.

Reference Type
Journal Article
Authors
Fu H, Doelling JH, Rubin DM, Vierstra RD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference