Reference: Moreland RB, et al. (1985) Identification of a nuclear localization signal of a yeast ribosomal protein. Proc Natl Acad Sci U S A 82(19):6561-5

Reference Help

Abstract


To identify a signal involved in transporting a ribosomal protein to the nucleus, we constructed hybrid genes encoding amino-terminal segments of yeast ribosomal protein L3 joined to the amino-terminal end of the entire Escherichia coli beta-galactosidase molecule. The subcellular locations of the corresponding hybrid proteins in yeast were determined by in situ immunofluorescence. The first 21 amino acids of L3 were sufficient to localize beta-galactosidase to the nucleus. This region shows limited homology to portions of other nuclear proteins identified as essential for their transport. Larger fusion proteins were also localized to the nucleus. However, a hybrid protein containing all but the 14 carboxyl-terminal amino acids from L3 initially failed to localize; this defect was corrected by inserting a glycine- and proline-containing bridge between the L3 and beta-galactosidase moieties. The renovated protein was able to associate with ribosomes, suggesting that, in addition to entering the nucleus, this hybrid polypeptide was assembled into 60S ribosomal subunits that were subsequently exported to the cytoplasm.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Moreland RB, Nam HG, Hereford LM, Fried HM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference