Take our Survey

Reference: Rutgers CA, et al. (1990) In vivo and in vitro analysis of structure-function relationships in ribosomal protein L25 from Saccharomyces cerevisiae. Biochim Biophys Acta 1050(1-3):74-9

Reference Help

Abstract

We have developed a combination of in vivo and in vitro methods which allows us to determine the effect of practically every structural change, deletions as well as point mutations, on various biological functions ofa ribosomal protein (r-protein). We have used this approach to delineate the functional domains of r-protein L25 from Saccharomyces cerevisiae. By analysis of the intracellular distribution of fusion proteins carrying various portions of L25 linked to Escherichia coli beta-galactosidase we traced the nuclear localization signal(s) of L25 to the region encompassing the N-terminal 61 amino acids of the protein. On the other hand, using in vitro prepared fragments of L25 we located the domain responsible for its specific binding to 26S rRNA to the region between amino acids 61 and 135. In order to be able to analyze the effect of mutations in L25 on ribosome biogenesis and function in vivo we constructed a mutant yeast strain in which the chromosomal L25 gene is placed under control of the inducible yeast GAL promoter. Since this strain is unable to grow on glucose as a carbon source the L25 gene must be essential for cell viability. Growth on glucose can be restored by introduction of a wild-type L25 gene on a plasmid, demonstrating that under these conditions the cells are dependent upon an extrachromosomally supplied copy of the gene.

Reference Type
Journal Article
Authors
Rutgers CA, Schaap PJ, Van 't Riet J, Woldringh CL, Raue HA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference