Reference: Maillet I, et al. (1999) Rpb4p is necessary for RNA polymerase II activity at high temperature. J Biol Chem 274(32):22586-90

Reference Help

Abstract


Rpb4p and Rpb7p are two subunits of the yeast RNA polymerase II, which form a subcomplex that can dissociate from the enzyme in vitro. Whereas RPB7 is essential, RPB4 is dispensable for cellular viability. However, the rpb4 null mutant is heat-sensitive, and it has been suggested that Rpb4p is an essential component for cellular stress response. To examine this hypothesis, we used two-dimensional gel electrophoresis to analyze the protein expression pattern of the rpb4 null mutant in response to heat shock, oxidative stress, osmotic stress, and in the post-diauxic phase. We show that this mutant is not impaired in stress induced transcriptional activation: the absence of heat shock response of the mutant is due to a general defect in RNA polymerase II activity at high temperature. Under this condition, Rpb4p is necessary to maintain the polymerase activity in vivo. The heat growth defect of the rpb4 null mutant can be partially suppressed by overexpression of RPB7, suggesting that Rpb4p maintains or stabilizes Rpb7p in the RNA polymerase. We also demonstrate that rpb4 null mutant is an appropriate tool to analyze the involvement of transcriptional events in the survival and adaptation to heat shock or other stresses.

Reference Type
Journal Article
Authors
Maillet I, Buhler JM, Sentenac A, Labarre J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference