Take our Survey

Reference: Caplin BE, et al. (1994) Substrate characterization of the Saccharomyces cerevisiae protein farnesyltransferase and type-I protein geranylgeranyltransferase. Biochim Biophys Acta 1205(1):39-48

Reference Help

Abstract

The in vitro substrate preferences of recombinant S. cerevisiae protein farnesyltransferase and type-I protein geranylgeranyl-transferase were determined. Proteins ending in 16 different CaaX sequences (C = cysteine, a = aliphatic amino acid, X = variable amino acids) were used to determine the protein substrate preferences of these S. cerevisiae prenyltransferases. The identities of the attached prenyl groups were confirmed by iodomethane treatment of prenylated substrates and reverse-phase HPLC. The CaaX preference of each recombinant yeast enzyme was found to be nearly identical to the reported preferences of purified mammalian protein farnesyltransferase and type-I protein geranylgeranyltransferase. S. cerevisiae farnesyltransferase preferentially farnesylated CaaX sequences ending in methionine, cysteine or serine. The farnesyltransferase also attached geranylgeranyl to some CaaX sequences ending in methionine, leucine and cysteine. The S. cerevisiae type-I geranylgeranyltransferase preferentially geranylgeranylated CaaX sequences ending in leucine and to a lesser degree methionine. Yeast extracts were found to contain prenylating activities identical to those observed with the recombinant enzymes. Farnesyltransferase activity in yeast extracts exceeded type-I geranylgeranyltransferase activity by at least 3-fold, resulting in prenylation of leucine-ending CaaX substrates with a mixture of 75% geranylgeranyl and 25% farnesyl. These results suggest that some substrate overlap may occur between the S. cerevisiae protein farnesyltransferase and the type-I protein geranylgeranyltransferase in vivo.

Reference Type
Journal Article
Authors
Caplin BE, Hettich LA, Marshall MS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference