Reference: Sadis S, et al. (1995) Synthetic signals for ubiquitin-dependent proteolysis. Mol Cell Biol 15(8):4086-94

Reference Help

Abstract


Short-lived proteins are targeted for turnover by sequence elements known as degradation signals. Because of the large size and heterogeneity of these signals, the structural features important for their function are not well defined. In this study, we have isolated three classes of degradation signals by screening short artificial sequences for the ability to destabilize a reporter protein. Class I and class II signals were derived by inserting random nonapeptide sequences after the second residue of beta-galactosidase. Class III signals contained five-residue homopolymers at the same position. Class I beta-galactosidase turnover was inhibited in mutants lacking either the ubiquitin-conjugating enzyme Ubc2 or the ubiquitin protein ligase Ubr1. Class I random inserts functioned to promote N-terminal proteolytic processing and define a novel pathway for exposure of residues that are destabilizing according to the N-end rule. Efficient degradation of proteins containing class II signals required at least three Ubc enzymes: Ubc6, Ubc7, and either one of the related enzymes Ubc4 and Ubc5. Analysis of 56 amino acid substitutions in the class II signal suggested that it is recognized in the form of an amphipathic alpha helix. Class III signals consisted of short tracts of hydrophobic residues such as Leu and Ile. Degradation of class III proteins involved the Ubc4 and Ubc5 enzymes but not Ubc2, Ubc6, or Ubc7. Clusters of hydrophobic residues appear to be critical for the recognition of both class II and class III signals.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
Sadis S, Atienza C Jr, Finley D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference