Take our Survey

Reference: Frankenberg-Schwager M, et al. (1995) Molecular mechanism of potentially lethal damage repair. I. Enhanced fidelity of DNA double-strand break rejoining under conditions allowing potentially lethal damage repair. Int J Radiat Biol 67(3):277-85

Reference Help

Abstract

This study contributes to the elucidation of the molecular mechanism underlying potentially lethal damage (PLD) repair. Repair of DNA double-strand breaks (dsbs) is involved in PLD repair in yeast, i.e. in the enhanced survival of cells due to post-irradiation treatment under non-growth conditions before plating cells on nutrient agar (growth conditions). However, dsbs are rejoined when cells are kept either in non-growth or growth medium. One possibility to explain the enhanced survival of cells after post-irradiation treatment in non-growth medium might be an enhanced fidelity of dsb rejoining under non-growth relative to growth conditions. We have addressed this problem by using a plasmid-mediated assay. Into one of the two selectable plasmid markers a single dsb was introduced by a restriction enzyme. The cut plasmid was transfected into an appropriate yeast mutant. Transformants that had correctly rejoined the dsb were selected on the basis of restoration of the function of the cut gene. The yeast mutant was allowed to rejoin the cut plasmid under either non-growth or growth conditions. The results show that the fidelity of dsb rejoining is higher in cells kept under non-growth relative to growth conditions.

Reference Type
Journal Article
Authors
Frankenberg-Schwager M, Jha B, Bar K, Frankenberg D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference