Reference: Fujiwara S, et al. (2001) Effects of pressure on the activity and spectroscopic properties of carboxyl proteinases. Apparent correlation of pepstatin-insensitivity and pressure response. Eur J Biochem 268(3):645-55

Reference Help

Abstract


The pressure dependence of the activity and spectroscopic properties of four carboxyl proteinases were investigated. Two were pepstatin-sensitive carboxyl proteinases (porcine pepsin and proteinase A from baker's yeast) and two were pepstatin-insensitive carboxyl proteinases (from Pseudomonas sp. 101 (pseudomonapepsin; PCP) and Xanthomonas sp. T-22 (xanthomonapepsin; XCP)). The specificity constant [k(cat)/K(m(app))] of PCP and XCP for a synthetic peptide substrate showed only a slight decrease with increasing pressure, whereas pepsin and proteinase A showed substantial disactivation at higher pressures. The calculated apparent activation volume (Delta V((k(cat)/(K(m)) was about 1, 3, 13, and 14 mL.mol(-1) for PCP, XCP, pepsin, and proteinase A, respectively. The hydrolysis of acid-denatured myoglobin by the four carboxyl proteinases was only slightly affected by high pressure (except for proteinase A at 400 MPa), in contrast to the results for the peptide hydrolysis. In fact, PCP, XCP, and proteinase A actually showed slightly higher degradations of acid-denatured myoglobin at higher pressures. The residual activities of these enzymes after the incubation at high pressures implied a pressure-induced stabilization towards autolysis. The changes in the fourth derivative near-UV absorbance spectrum of the four enzymes in aqueous solution were measured at various pressures from 0.1 to 400 MPa. Upon an increase in pressure, the peaks from PCP and XCP red-shifted slightly, whereas pepsin and proteinase A blue-shifted substantially, thus indicating a more polar environment. The intrinsic fluorescence also decreased upon increasing pressure. However, the change for XCP was rather small, but the change for the other three was very large. The changes in the peak wavelength for pepsin and proteinase A were characteristic, and also indicated a more polar environment under high pressure. An analysis by the center of spectra mass (CSM) gave the Delta G and Delta V of transition as 9.8 kJ x mol(-1) and -24 mL x mol(-1) (pepsin) and 11.7 kJ x mol(-1) and -43 mL x mol(-1) (proteinase A), respectively, by assuming a simple two-state transition. The circular dichroism (CD) showed relatively small changes after 1-h incubations at 400 MPa, indicating that the secondary structures were largely maintained.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Fujiwara S, Kunugi S, Oyama H, Oda K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference