Take our Survey

Reference: Wills C and Melham T (1985) Pyruvate carboxylase deficiency in yeast: a mutant affecting the interaction between the glyoxylate and Krebs cycles. Arch Biochem Biophys 236(2):782-91

Reference Help

Abstract


A single-gene nuclear mutant has been isolated in Saccharomyces cerevisiae which cannot grow on minimal medium supplemented with ethanol, acetate, pyruvate, aspartate, or oxaloacetate as sole carbon sources. It will grow on complete medium with these carbon sources, and on minimal medium with dextrose as carbon source. The only supplement which will permit growth on minimal medium with ethanol or pyruvate is aspartate, so the mutant is an aspartate auxotroph when grown on these nonfermentable substrates. It exhibits enhanced levels of phosphoenolpyruvate carboxykinase (EC 4.1.1.49) when grown on dextrose. The mutant can survive as an alcohol dehydrogenase-negative, indicating that the defect is not in the Krebs Cycle or in electron transport. When grown on pyruvate, it produces two to three times as much free alanine and half as much aspartate plus asparagine as the wild type. Two different assays show that the mutant phenotype is due to a deficiency of pyruvate carboxylase (EC 6.4.1.1), an important anaplerotic enzyme. Inferences that can be drawn from the characteristics of this mutant include (a) the glyoxylate cycle is probably located entirely outside the mitochondria, (b) the inner mitochondrial membrane appears to be impermeable to oxaloacetate, and (c) a succinate-malate exchange across the inner mitochondrial membrane connects the glyoxylate and Krebs cycles when yeast is grown on minimal medium with ethanol as a sole carbon source.

Reference Type
Journal Article
Authors
Wills C, Melham T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference