Take our Survey

Reference: Towler DA, et al. (1988) Myristoyl CoA:protein N-myristoyltransferase activities from rat liver and yeast possess overlapping yet distinct peptide substrate specificities. J Biol Chem 263(4):1784-90

Reference Help

Abstract

A variety of eukaryotic viral and cellular proteins possesses an NH2-terminal N-myristoylglycine residue important for their biological functions. Recent studies of the primary structural requirements for peptide substrates of the enzyme responsible for this modification in yeast demonstrated that residues 1, 2, and 5 play a critical role in enzyme: ligand interactions (Towler, D. A., Adams, S. P., Eubanks, S. R., Towery, D. S., Jackson-Machelski, E., Glaser, L., and Gordon J. I. (1987b) Proc. Natl. Acad. Sci. U. S. A. 84, 2708-2812). This was determined by examining as substrates a series of synthetic peptides whose sequences were systematically altered from a "parental" peptide derived from the known N-myristoylprotein bovine heart cyclic AMP-dependent protein kinase (A kinase) catalytic subunit. We have now extended these studies in order to examine structure/activity relationships in the COOH-terminal regions of octapeptide substrates of yeast N-myristoyltransferase (NMT). The interaction between yeast NMT and the side chain of residue 5 in peptide ligands is apparently sterically constrained, since Thr5 is unable to promote the very high affinity binding observed with a Ser5 substitution. A substrate hexapeptide core has been defined which contains much of the information necessary for recognition by this lower eukaryotic NMT. Addition of COOH-terminal basic residues to this hexapeptide enhances peptide binding, while COOH-terminal acidic residues destabilize NMT: ligand interactions. Based on the results obtained from our in vitro studies of over 80 synthetic peptides and yeast NMT, we have identified a number of potential N-myristoylproteins from searches of available protein databases. These include hepatitis B virus pre-S1, human SYN-kinase, rodent Gi alpha, and bovine transducin-alpha. Peptides corresponding to the NH2-terminal sequences of these proteins and several known N-myristoylproteins were assayed using yeast NMT as well as partially purified rat liver NMT. While a number of the synthetic peptides exhibited similar catalytic properties with the yeast and mammalian enzymes, surprisingly, the SYN-kinase, Gi alpha, and transducin-alpha peptides were N-myristoylated by rat NMT but not by yeast NMT. This suggests that either multiple NMT activities exist in rat liver or the yeast and rodent enzymes have similar but distinct peptide substrate specificities.

Reference Type
Journal Article
Authors
Towler DA, Adams SP, Eubanks SR, Towery DS, Jackson-Machelski E, Glaser L, Gordon JI
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference