Reference: Levens D and Howley PM (1985) Novel method for identifying sequence-specific DNA-binding proteins. Mol Cell Biol 5(9):2307-15

Reference Help

Abstract

We developed a general method for the enrichment and identification of sequence-specific DNA-binding proteins. A well-characterized protein-DNA interaction is used to isolate from crude cellular extracts or fractions thereof proteins which bind to specific DNA sequences; the method is based solely on this binding property of the proteins. The DNA sequence of interest, cloned adjacent to the lac operator DNA segment is incubated with a lac repressor-beta-galactosidase fusion protein which retains full operator and inducer binding properties. The DNA fragment bound to the lac repressor-beta-galactosidase fusion protein is precipitated by the addition of affinity-purified anti-beta-galactosidase immobilized on beads. This forms an affinity matrix for any proteins which might interact specifically with the DNA sequence cloned adjacent to the lac operator. When incubated with cellular extracts in the presence of excess competitor DNA, any protein(s) which specifically binds to the cloned DNA sequence of interest can be cleanly precipitated. When isopropyl-beta-D-thiogalactopyranoside is added, the lac repressor releases the bound DNA, and thus the protein-DNA complex consisting of the specific restriction fragment and any specific binding protein(s) is released, permitting the identification of the protein by standard biochemical techniques. We demonstrate the utility of this method with the lambda repressor, another well-characterized DNA-binding protein, as a model. In addition, with crude preparations of the yeast mitochondrial RNA polymerase, we identified a 70,000-molecular-weight peptide which binds specifically to the promoter region of the yeast mitochondrial 14S rRNA gene.

Reference Type
Journal Article
Authors
Levens D, Howley PM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference