Reference: Schwob E, et al. (1988) Purification of the yeast mitochondrial methionyl-tRNA synthetase. Common and distinctive features of the cytoplasmic and mitochondrial isoenzymes. Eur J Biochem 178(1):235-42

Reference Help

Abstract


Yeast-mitochondrial methionyl-tRNA synthetase was purified 1060-fold from mitochondrial matrix proteins of Saccharomyces cerevisiae using a four-step procedure based on affinity chromatography (heparin-Ultrogel, tRNA(Met)-Sepharose, Agarose-hexyl-AMP) to yield to a single polypeptide of high specific activity (1800 U/mg). Like the cytoplasmic methionyl-tRNA synthetase (Mr 85,000), the mitochondrial isoenzyme is a monomer, but of significantly smaller polypeptide size (Mr 65,000). In contrast, the corresponding enzyme of Escherichia coli is a dimer (Mr 152,000) made up of identical subunits. The measured affinity constants of the purified mitochondrial enzyme for methionine and tRNA(Met) are similar to those of the cytoplasmic isoenzyme. However, the two yeast enzymes exhibit clearly different patterns of aminoacylation of heterologous yeast and E. coli tRNA(Met). Furthermore, polyclonal antibodies raised against the two proteins did not show any cross-reactivity by inhibition of enzymatic activity and by the highly sensitive immunoblotting technique, indicating that the two enzymes share little, if any, common antigenic determinants. Taken together, our results further support the belief that the yeast mitochondrial and cytoplasmic methionyl-tRNA synthetases are different proteins coded for by two distinct nuclear genes. Like the yeast cytoplasmic aminoacyl-tRNA synthetases, the mitochondrial enzymes displayed affinity for immobilized heparin. This distinguishes them from the corresponding enzymes of E. coli. Such an unexpected property of the mitochondrial enzymes suggests that they have acquired during evolution a domain for binding to negatively charged cellular components.

Reference Type
Journal Article
Authors
Schwob E, Sanni A, Fasiolo F, Martin RP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference