Take our Survey

Reference: Kruger W, et al. (1995) Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev 9(22):2770-9

Reference Help

Abstract

Transcription of many yeast genes requires the SWI/SNF regulatory complex. Prior studies show that reduced transcription of the HO gene in swi and snf mutants is partially relieved by mutations in the SIN1 and SIN2 genes. Here we show that SIN2 is identical to HHT1, one of the two genes coding for histone H3, and that mutations in either can result in a Sin- phenotype. These mutations are partially dominant to wild type and cause amino acid substitutions in three conserved positions in the structured domain of histone H3. We have also identified partially dominant sin mutations that affect two conserved positions in the histone-fold domain of histone H4. Three sin mutations affect surface residues proposed to interact with DNA and may reduce affinity of DNA for the histone octamer. Two sin mutations affect residues at or near interfaces between (H2A-H2B) dimer and (H3-H4)2 tetramer subunits of the histone octamer and may affect nucleosome stability or conformation. The ability of mutations affecting the structure of the histone octamer to relieve the need for SWI and SNF products supports the proposal that the SWI/SNF complex stimulates transcription by altering chromatin structure and can account for the apparent conservation of SWI and SNF proteins in eukaryotes other than yeast.

Reference Type
Journal Article
Authors
Kruger W, Peterson CL, Sil A, Coburn C, Arents G, Moudrianakis EN, Herskowitz I
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference