Reference: Whelan WL and Ballou CE (1975) Sporulation in D-glucosamine auxotrophs of Saccharomyces cerevisiae: meiosis with defective ascospore wall formation. J Bacteriol 124(3):1545-57

Reference Help

Abstract

Mutants that require exogenous D-glucosamine for growth were isolated from Saccharomyces cerevisiae X2180-1A after ethyl methane sulfonate mutagenesis. Class A auxotrophs fail to grow on yeast extract-peptone-dextrose and minimal media, whereas class B auxotrophs grow on minimal medium and readily revert to grow on yeast extract-peptone-dextrose medium. Class B auxotrophs are suppressible by a class of suppressors distinct from nonsense suppressors, and their properties suggest that they are defective in a regulatory function. All 23 mutants studied were recessive and allelic, and they define a new gene designated gcn1. An analysis of a class A auxotroph revealed that it lacked L-glutamine:D-fructose 6-phosphate amidotransferase (EC 2.6.1.16) activity and indicates that GCN1 codes the amino acid sequence of this enzyme. The finding that all mutants were allelic indicates that the amidotransferase is the only enzyme responsible for D-glucosamine synthesis in S. cerevisiae. The occurrence of allelic complementation and media-conditional mutants suggests that the amidotransferase is a multimeric enzyme with an activity subject to metabolic control. Diploids homozygous for gcn1 fail to complete sporulation. They proceed through meiosis normally, as judged by the occurrence of meiotic recombination, the production of haploid nuclei, and the formation of multinucleate cells visible after Giemsa staining. However, the formation of glusulase-resistant ascospores is blocked, and deformed spores lacking the electron-dense outer layer characteristic of the normal spore wall are observed by electron microscopy. Cells that acquire the ability to synthesize D-glucosamine, because of gene conversion during meiosis, complete sporulation in a normal fashion. Thus, the GCN1 gene product appears to be synthesized late in sporulation and may prove to be a useful developmental landmark for the termination of ascospore development.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Whelan WL, Ballou CE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference