Take our Survey

Reference: Venema J, et al. (1995) Development and application of an in vivo system to study yeast ribosomal RNA biogenesis and function. Yeast 11(2):145-56

Reference Help

Abstract

We have developed a system for mutational analysis of Saccharomyces cerevisiae ribosomal RNA in vivo in which yeast cells can be made completely dependent on mutant rRNA and ribosomes by a simple switch in carbon source. The system is based on a yeast strain defective in RNA polymerase I (Pol I) transcription [Nogi et al. (1991) Proc. Natl. Acad. Sci. USA 88, 3962-3966]. This normally inviable strain was rescued by integration of multiple copies of the complete 37S pre-rRNA operon under control of the inducible, Pol II-transcribed GAL7 promoter into the rDNA repeat on chromosome XII. The resulting YJV100 strain can only grow on medium containing galactose as the carbon source. A second, episomal vector was constructed in which the rDNA unit was placed under control of the constitutive PGK1 promoter. YJV100 cells transformed with this vector are now also able to grow on glucose-based medium making the cells completely dependent on plasmid-encoded rRNA. We show that the Pol II-transcribed pre-rRNA is processed and assembled similarly to authentic Pol I-synthesised pre-rRNA, making this 'in vivo Pol II system' suitable for the detailed analysis of rRNA mutations, even highly deleterious ones, affecting ribosome biogenesis or function. A clear demonstration of this is our finding that an insertion into variable region V8 in 17S rRNA, previously judged to be neutral with respect to processing of 17S rRNA, its assembly into 40S subunits and the polysomal distribution of these subunits [Musters et al. (1989), Mol. Cell. Biol. 9, 551-559], is in fact a lethal mutation.

Reference Type
Journal Article
Authors
Venema J, Dirks-Mulder A, Faber AW, Raue HA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference