Reference: von der Haar F (1976) Phenylalanyl-tRNA synthetase from baker's yeast. Salt dependence of steady-state kinetics indicates two molecular forms of the enzyme. Eur J Biochem 64(2):395-8

Reference Help

Abstract


Steady-state kinetic data of aminoacylation of tRNAPhe by phenylalanyl-tRNA synthetase depend on salt concentration. At 5 mM KCl and 20 mM MgSO4 a non-linear curve is found in the double-reciprocal plot for ATP and phenylalanine, while at 200 mM KCl and 50 mM MgSO4 a linear curve is observed. KCl and MgSO4 dependence of the reaction also show biphasic curves with intersection points of the two extrapolated linear parts at 50 mM and 10 mM, respectively. A biphasic curve is also found if the concentration of CTP is varied at constant low ATP concentration. Extrapolations of the linear parts of the curves for ATP as well as for CTP at 5 mM KCl and 20 mM MgSO4 intersected the 1/[NTP] axis at 1.2 +/- 0.1 mM. Hence the existence of a non-linear curve for ATP as well as phenylalanine does not necessarily indicate two non-equivalent binding sites for these substrates. A more likely explanation is the existence of two different molecular forms of phenylalanyl-tRNA synthetase which are interconvertible by salt. This explanation is substantiated by the observation that proteolytic digestion of phenylalanyl-tRNA synthetase is more easily achieved at low than at medium ionic strength. In addition mischarging of tRNAIle with phenylalanine by phenylalanyl-tRNA synthetase occurs at a moderate rate at 5 mM KCl and 20 mM MgSO4 whereas it is largely depressed by addition of either 5 mM CTP or 150 mM KCl.

Reference Type
Journal Article
Authors
von der Haar F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference