Reference: Plateau P, et al. (1981) Zinc(II)-dependent synthesis of diadenosine 5', 5"' -P(1) ,P(4) -tetraphosphate by Escherichia coli and yeast phenylalanyl transfer ribonucleic acid synthetases. Biochemistry 20(16):4654-62

Reference Help

Abstract


A new activity of Escherichia coli and yeast phenylalanyl-tRNA synthetases, the conversion adenosine 5' -triphosphate into diadenosine 5' ,5"' -P(1) ,P(4) -tetraphosphate, is reported. This activity is followed by (31)P NMR and chromatography on poly(ethylenimine)-cellulose. It is revealed by the addition of ZnCl2 to a reaction mixture containing the enzyme, ATP-Mg(2+), L-phenylalanine, and pyrophosphatase It reflects the reaction enzyme-bound phenylalanyl adenylate with ATP instead of PPi and strongly depends on the hydrolysis of pyrophosphate in the assay medium. The zinc dependence of this reaction parallels that of the inhibition of tRNA(phe) aminoacylation which is described in the accompanying paper [Mayaux, J. F., & Blanquet, S. (1981) Biochemistry (preceding paper in this issue)]. In the presence of an unlimiting pyrophosphatase activity, diadenosine tetraphosphate synthesis by E. coli and yeast phenylalanyl-tRNA synthetases occurs at maximal rates of 0.5 and 2 s-1, respectively (37 degrees C, pH 7.8, 150 mM KC1, 5 mM ATP, 10 mM MgCl2, 2 mM L-phenylalanine, and 80 muM ZnCl2). Under identical experimental conditions, E coli isoleucyl-, methionyl-, and tyrosyl-tRNA synthetases produce small amounts of diadenosine tetraphosphate at rates 2 or 3 orders of magnitude lower than that achieved by phenylalanyl-tRNA synthetase. In the case of E. coli phenylalanyl-tRNA synthetase, it is shown that the diadenosine tetraphosphate synthetase activity is accompanied by a diadenosinetetraphosphatase activity. This activity, actually supported by phenylalanyl-tRNA synthetase, is responsible for the appearance of ADP in the assay medium. It requires also the presence of both ZnCl2 and L-phenylalanine. The formation of ADP from diadenosine tetraphosphate and its reaction with enzyme-bound aminoacyl adenylate account for the appearance in the reaction mixture of diadenosine 5' ,5"' -P(1) ,P(3)-triphosphate, after that of diadenosine tetraphosphate. The significance of these findings in the context of the role of diadenosine tetraphosphate in controlling cellular growth is discussed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Plateau P, Mayaux JF, Blanquet S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference