Take our Survey

Reference: Smit G, et al. (1992) Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant. Appl Environ Microbiol 58(11):3709-14

Reference Help

Abstract

Initiation of flocculation ability of Saccharomyces cerevisiae MPY1 cells was observed at the moment the cells stop dividing because of nitrogen limitation. A shift in concentration of the limiting nutrient resulted in a corresponding shift in cell division and initiation of flocculence. Other limitations also led to initiation of flocculence, with magnesium limitation as the exception. Magnesium-limited S. cerevisiae cells did not flocculate at any stage of growth. Cell surface hydrophobicity was found to be strongly correlated with the ability of the yeast cells to flocculate. Hydrophobicity sharply increased at the end of the logarithmic growth phase, shortly before initiation of flocculation ability. Treatments of cells which resulted in a decrease in hydrophobicity also yielded a decrease in flocculation ability. Similarly, the presence of polycations increased both hydrophobicity and the ability to flocculate. Magnesium-limited cells were found to be strongly affected in cell surface hydrophobicity. A proteinaceous cell surface factor(s) was identified as a flocculin. This heat-stable component had a strong emulsifying activity, and appears to be involved in both cell surface hydrophobicity and in flocculation ability of the yeast cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Smit G, Straver MH, Lugtenberg BJ, Kijne JW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference