Reference: Sobrado P, et al. (2001) Probing the relative timing of hydrogen abstraction steps in the flavocytochrome b2 reaction with primary and solvent deuterium isotope effects and mutant enzymes. Biochemistry 40(4):994-1001

Reference Help

Abstract

Flavocytochrome b(2) catalyzes the oxidation of lactate to pyruvate. Primary deuterium and solvent kinetic isotope effects have been used to determine the relative timing of cleavage of the lactate O-H and C-H bonds by the wild-type enzyme, a mutant protein lacking the heme domain, and the D282N enzyme. The (D)V(max) and (D)(V/K(lactate)) values are both 3.0 with the wild-type enzyme at pH 7.5 and 25 degrees C, increasing to about 3.6 with the flavin domain and increasing further to about 4.5 with the D282N enzyme. Under these conditions, the (D20)V(max) values are 1.38, 1.18, and 0.98 for the wild-type enzyme, the flavin domain, and the D282N enzyme, respectively; the (D20)(V/K(lactate)) values are 0.9, 0.44, and 1.0, respectively. The (D)k(red) value is 5.4 for the wild-type enzyme and 3.5 for the flavin domain, whereas the solvent isotope effect on this kinetic parameter is 1.0 for both enzymes. The V(max) values for the wild-type enzyme and the flavin domain are 32 and 15% limited by viscosity, respectively. In contrast, the V/K(lactate) value for the flavin domain increases about 2-fold at moderate concentrations of glycerol. The data are consistent with a minimal chemical mechanism in which the lactate hydroxyl proton is not in flight in the transition state for C-H bond cleavage and there is an internal equilibrium involving the lactate-bound enzyme prior to C-H bond cleavage which is sensitive to solution conditions. Removal of the hydroxyl proton may occur in this pre-equilibrium.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Sobrado P, Daubner SC, Fitzpatrick PF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference