Take our Survey

Reference: Poyton RO and Schatz G (1975) Cytochrome c oxidase from bakers' yeast. IV. Immunological evidence for the participation of a mitochondrially synthesized subunit in enzymatic activity. J Biol Chem 250(2):762-6

Reference Help

Abstract

In order to study the role of the individual subunits of yeast cytochrome c oxidase, rabbit antisera were prepared against Subunit II (a mitochondrially made polypeptide) and Subunit VI (a cytoplasmically made polypeptide). Antisera were also obtained against a mixture of the two mitochondrially made subunits (I PLUS II) and against mixtures of the following cytoplasmically made subunits: (IV PLUS VI); (V PLUS VII); and (IV PLUS V PLUS VI PLUS VII). Neither anti-II serum nor anti-VI serum cross-reacted with any of the other six subunits of cytochrome c oxidase as judged by a sensitive ring test or by double diffusion in agarose gels. Anti-II serum inhibited the oxidation of ferrocytochrome c by purified yeast cytochrome c oxidase or by freshly isolated as well as sonically fragmented yeast mitochondria. Anti-(V, VII) serum and anti-(IV, V, VI, VII) serum were also strongly inhibitory. Anti-VI serum and anti-(IV, VI) serum inhibited only weakly. If purified cytochrome c oxidase was inhibited with a saturating amount of anti-VI serum, anti-II serum elicited a further increment of inhibition, as would be expected if the inhibitory effects of these two antisera involved different antigenic sites on the holoenzyme. Each of the antisera precipitated all seven cytochrome c oxidase subunits from crude mitochondrial extracts. However, anti-VI and, particularly, anti-II were much less effective precipitants than antisera against Subunits IV to VII or antisera against the holoenzyme. These data suggest that the oxidation of ferrocytochrome c by cytochrome c oxidase required both mitochondrially as well as cytoplasmically made subunits.

Reference Type
Journal Article
Authors
Poyton RO, Schatz G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference