Reference: Boumans H, et al. (1998) The respiratory chain in yeast behaves as a single functional unit. J Biol Chem 273(9):4872-7

Reference Help

Abstract


Inhibitor titrations using antimycin have been used to study the pool behavior of ubiquinone and cytochrome c in the respiratory chain of the yeast Saccharomyces cerevisiae. If present in a homogeneous pool, these carriers should be able to diffuse freely through or along the membrane respectively and accept and subsequently donate electrons to an infinite number of the respective respiratory complex. However, we show that under physiological conditions neither ubiquinone nor cytochrome c exhibits pool behavior, implying that the respiratory chain in yeast is one functional unit. Pool behavior can be introduced for both small carriers by adding chaotropic agents to the reaction medium. We conclude that these agents disrupt the interaction between the respiratory complexes, thereby causing them to become randomly arranged in the membrane. In such a situation, ubiquinone and cytochrome c become mobile carriers, shuttling between the large respiratory complexes. Furthermore, we conclude from the respiratory activities found for different substrates that the respiratory units in yeast vary in composition with respect to the ubiquinone reducing enzyme. All units contain the cytochrome chain, supplemented with either succinate dehydrogenase or the internal or the external NADH dehydrogenase. This implies that when only one substrate is available, only a certain fraction of the cytochrome chain is used in respiration. The molecular organization of the respiratory chain in yeast is compared with that of higher eukaryotes and to the electron transfer systems of photosynthetic membranes. Differences between the organization of the respiratory chain of yeast and that of higher eukaryotes are discussed in terms of the ability of yeast to radically alter its metabolism in response to change of the available carbon source.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Boumans H, Grivell LA, Berden JA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference