Take our Survey

Reference: Lemesle-Meunier D, et al. (1993) Cytochrome b-deficient mutants of the ubiquinol-cytochrome c oxidoreductase in Saccharomyces cerevisiae. Consequence for the functional and structural characteristics of the complex. J Biol Chem 268(21):15626-32

Reference Help

Abstract


We characterized six novel missense mutations in mitochondrial cytochrome b (C133Y, W142R, S206L, M221K, L282F, and G340E) which impair the respiratory growth of yeast and which have differential effects on the functioning and assembly of the bc1 complex. The mutations have been mapped genetically in exons of the mitochondrial gene coding for apocytochrome b and their nucleotide sequence established. The mutants help to better define the topographical and primary sequence location of the ubiquinol oxidase (center P) and ubiquinone reductase (center N) sites on cytochrome b. Two mutants (C133Y and S206L) resulted in an active assembled complex, with selective disturbances of heme 565 and heme 562, respectively, which is consistent with the assignment of the axial ligands of these hemes; the C133Y mutation induced myxothiazol resistance, whereas the S206L did not modify the antimycin binding site, although perturbing the center N. These two amino acid replacements, along with those described elsewhere (Tron, T., and Lemesle-Meunier, D. (1990) Curr. Genet. 18, 413-419), constitute a novel class of mutants exhibiting appreciable electron transfer activity, despite their impaired ability to grow on respiratory substrates, raising the possibility that these mutants carry alleles which result in "decoupling" of proton translocation from electron transfer. Mutants W142R and M221K had an inactive but well assembled bc1 complex, whereas the G34OE and L282F mutations impaired the assembly of the bc1 complex.

Reference Type
Journal Article
Authors
Lemesle-Meunier D, Brivet-Chevillotte P, di Rago JP, Slonimski PP, Bruel C, Tron T, Forget N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference