Take our Survey

Reference: Dolence JM, et al. (1995) Yeast protein farnesyltransferase: steady-state kinetic studies of substrate binding. Biochemistry 34(51):16687-94

Reference Help

Abstract


Protein farnesyltransferase (PFTase) catalyzes the alkylation of cysteine in C-terminal CaaX sequences of a variety of proteins, including Ras, nuclear lamins, large G-proteins, and phosphodiesterases, by farnesyl diphosphate (FPP). These modifications enhance the ability of the proteins to associate with membranes and are essential for their respective functions. The binding mechanism for yeast PFTase was deduced from a combination of steady-state kinetic and equilibrium studies. Rates for prenylation were measured by a continuous assay based on an enhancement in the fluorescence of the dansyl moiety in pentapeptide dansyl-GCVIA upon farnesylation by FPP. Unreactive substrate analogs for FPP and dansyl-GCVIA gave steady-state inhibition patterns for the dead-end inhibitors typical of an ordered sequential mechanism in which FPP adds to the enzyme before the peptide. The kinetic analysis was complicated by substrate inhibition for dansyl-GCVIA. The substrate inhibition was reversed at high concentrations of FPP, indicating that formation of the nonproductive enzyme--peptide complex is competitive with respect to FPP. Progress curves were fitted to an integrated form of the rate expression to determine the catalytic constant, kcat = 4.5 +/- 1.9 s-1, and the Michaelis constant for dansyl-GCVIA, KMD = 0.9 +/- 0.1 microM. The dissociation constant for FPP, KD = 75 +/- 15 nM, was measured using a membrane retention assay.

Reference Type
Journal Article
Authors
Dolence JM, Cassidy PB, Mathis JR, Poulter CD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference