Reference: Pielak GJ and Wang X (2001) Interactions between yeast iso-1-cytochrome c and its peroxidase. Biochemistry 40(2):422-8

Reference Help

Abstract


Isothermal titration calorimetry was used to study the formation of 19 complexes involving yeast iso-1-ferricytochrome c (Cc) and ferricytochrome c peroxidase (CcP). The complexes comprised combinations of the wild-type proteins, six CcP variants, and three Cc variants. Sixteen protein combinations were designed to probe the crystallographically defined interface between Cc and CcP. The data show that the high-affinity sites on Cc and CcP coincide with the crystallographically defined sites. Changing charged residues to alanine increases the enthalpy of complex formation by a constant amount, but the decrease in stability depends on the location of the amino acid substitution. Deleting methyl groups has a small effect on the binding enthalpy and a larger deleterious effect on the binding free energy, consistent with model studies of the hydrophobic effect, and showing that nonpolar interactions also stabilize the complex. Double-mutant cycles were used to determine the coupling energies for nine Cc-CcP residue pairs. Comparing these energies to the crystal structure of the complex leads to the conclusion that many of the substitutions induce a rearrangement of the complex.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Pielak GJ, Wang X
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference