Take our Survey

Reference: Chan TF, et al. (2001) Regulation of APG14 expression by the GATA-type transcription factor Gln3p. J Biol Chem 276(9):6463-7

Reference Help

Abstract


Gln3p is a nitrogen catabolite repression-sensitive GATA-type transcription factor. Its nuclear accumulation was recently shown to be under the control of TOR signaling. Gln3p normally resides in the cytoplasm. When cells are starved from nitrogen nutrients or treated with rapamycin, however, Gln3p becomes translocated into the nucleus, thereby activating the expression of genes involved in nitrogen utilization and transport. To identify other genes under the control of Gln3p, we searched for the Gln3p-binding GATAA motifs within 500 base pairs of the promoter sequences upstream of the yeast open reading frames in the Saccharomyces Genome Database. APG14, a gene essential for autophagy, was found to have the most GATAA motifs. We show that nitrogen starvation or rapamycin treatment rapidly causes a more than 20-fold induction of APG14. The expression of APG14 is dependent on Gln3p; deletion of Gln3p severely reduced its induction by rapamycin, whereas depletion of Ure2p caused its constitutive expression. However, overexpression of APG14 led to only a slight increase in autophagy in nitrogen-rich medium. Therefore, these results define a signaling cascade leading to the expression of APG14 in response to the availability of nitrogen nutrients and suggest that the regulated expression of APG14 contributes to but is not sufficient for the control of autophagy.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Chan TF, Bertram PG, Ai W, Zheng XF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference