Reference: Verdoucq L, et al. (1999) In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J Biol Chem 274(28):19714-22

Reference Help

Abstract

Disruption of the two thioredoxin genes in yeast dramatically affects cell viability and growth. Expression of Arabidopsis thioredoxin AtTRX3 in the Saccharomyces thioredoxin Delta strain EMY63 restores a wild-type cell cycle, the ability to grow on methionine sulfoxide, and H2O2 tolerance. In order to isolate thioredoxin targets related to these phenotypes, we prepared a C35S (Escherichia coli numbering) thioredoxin mutant to stabilize the intermediate disulfide bridged complex and we added a polyhistidine N-terminal extension in order to purify the complex rapidly. Expression of this mutant thioredoxin in the wild-type yeast induces a reduced tolerance to H2O2, but only limited change in the cell cycle and no change in methionine sulfoxide utilization. Expression in the Delta thioredoxin strain EMY63 allowed us to isolate a complex of the thioredoxin with YLR109, an abundant yeast protein related to PMP20, a peroxisomal protein of Candida. No function has so far been attributed to this protein or to the other numerous homologues described in plants, animals, fungi, and prokaryotes. On the basis of the complementation and of low similarity with peroxiredoxins, we produced YLR109 and one of its Arabidopsis homologues in E. coli to test their peroxiredoxins activity. We demonstrate that both recombinant proteins present a thioredoxin-dependent peroxidase activity in vitro. The possible functions of this new peroxiredoxin family are discussed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Verdoucq L, Vignols F, Jacquot JP, Chartier Y, Meyer Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference