Reference: Sreenivas A, et al. (2001) Phosphorylation of the yeast phospholipid synthesis regulatory protein Opi1p by protein kinase C. J Biol Chem 276(32):29915-23

Reference Help

Abstract


Opi1p is a negative regulator of expression of phospholipid-synthesizing enzymes in the yeast Saccharomyces cerevisiae. In this work, we examined the phosphorylation of Opi1p by protein kinase C. Using a purified maltose-binding protein-Opi1p fusion protein as a substrate, protein kinase C activity was time- and dose-dependent, and dependent on the concentrations of Opi1p and ATP. Protein kinase C phosphorylated Opi1p on a serine residue. The Opi1p synthetic peptide GVLKQSCRQK, which contained a protein kinase C sequence motif at Ser(26), was a substrate for protein kinase C. Phosphorylation of a purified S26A mutant maltose-binding protein-Opi1p fusion protein by the kinase was reduced when compared with the wild-type protein. A major phosphopeptide present in purified wild-type Opi1p was absent from the purified S26A mutant protein. In vivo labeling experiments showed that the phosphorylation of Opi1p was physiologically relevant, and that the extent of phosphorylation of the S26A mutant protein was reduced by 50% when compared with the wild-type protein. The physiological consequence of the phosphorylation of Opi1p at Ser(26) was examined by measuring the effect of the S26A mutation on the expression of the phospholipid synthesis gene INO1. The beta-galactosidase activity driven by an INO1-CYC-lacI'Z reporter gene in opi1Delta mutant cells expressing the S26A mutant Opi1p was about 50% lower than that of cells expressing the wild-type Opi1p protein. These data supported the conclusion that phosphorylation of Opi1p at Ser(26) mediated the attenuation of the negative regulatory function of Opi1p on the expression of the INO1 gene.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Sreenivas A, Villa-Garcia MJ, Henry SA, Carman GM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference