Reference: Maris AF, et al. (2001) Diauxic shift-induced stress resistance against hydroperoxides in Saccharomyces cerevisiae is not an adaptive stress response and does not depend on functional mitochondria. Curr Genet 39(3):137-49

Reference Help

Abstract


Respiring Saccharomyces cerevisiae cells grown on a non-fermentable carbon source are intrinsically more resistant to several stresses, including oxidative stress. The mechanisms leading to increased stress resistance are not yet well understood. Active mitochondria are the major source of intracellular reactive oxygen species (ROS), which could cause the up-regulation of the antioxidant defense systems. We investigated the role of mitochondria in the intrinsic stress resistance against the hydroperoxides H2O2 and tert-butylhydroperoxide 4 h after a shift in carbon source. We found that, independently of functional mitochondria, the yeast acquired the intrinsic resistance of respiring cells against hydroperoxides solely as a response to a change of carbon source in the growth medium. Furthermore, utilizing reporter gene fusion constructs, we monitored the expression of the gamma-glutamylcysteinyl synthetase (encoded by GSH1) and the two superoxide dismutases (encoded by SOD1 and SOD2) during the metabolic transition from fermentation to respiration; and we detected an up-regulation of all three genes during the diauxic shift. Overall available data allowed us to propose that the antioxidant system of S. cerevisiae could be considered as a class of genes under glucose/carbon catabolite regulation. This control system is different from the well-known adaptive response to oxidative stress.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Maris AF, Assumpção AL, Bonatto D, Brendel M, Henriques JA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference