Reference: Vannier D, et al. (2001) A role for Sds3p, a component of the Rpd3p/Sin3p deacetylase complex, in maintaining cellular integrity in Saccharomyces cerevisiae. Mol Genet Genomics 265(3):560-8

Reference Help

Abstract

The SDS3 gene was identified in a suppressor screen for mutations that enhance position-effect silencing in yeast. Cells that are defective in SDS3 have pleiotropic phenotypes, similar to those seen in the absence of the histone deacetylase components Rpd3p and Sin3p, including meiotic defects and improper regulation of the HO gene. To gain further insight into SDS3 function we undertook an epistasis analysis with other SDS genes. We found that sds3 is synthetically lethal in combination with a deletion of the SWI6 (SDS11) gene, which encodes a cell-cycle regulator. sds3 swi6 double mutants do not display a specific cell-cycle arrest phenotype, but instead die due to cell lysis. Constitutive expression of the G1 cyclin gene CLN2 restores viability to an sds3 swi6 strain, as does overexpression of SKT5/ CHS4, which encodes a regulatory subunit of chitin synthase III, and SSD1, a gene previously implicated in ensuring cell-cycle progression and cellular integrity. Significantly, growth in the presence of 1 M sorbitol or overexpression of PKC1 also partially suppresses the lethal phenotype of the sds3 swi6 strain. This lethality in the absence of SWI6 function most probably reflects an important or essential role for Sds3p in the Rpd3p/Sin3p histone deacetylase complex, since RPD3 and SIN3 mutations are also synthetically lethal in combination with swi6 and these phenotypes are also rescued by elevated dosage of SKT5/CHS4, SSD1, or PCK1. Taken together, these data indicate that the transcription factor Swi6p and the Rpd3p-based deacetylase complex act in parallel pathways to activate genes required for cell wall biosynthesis.

Reference Type
Journal Article
Authors
Vannier D, Damay P, Shore D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference