Reference: Katz WS and Solomon F (1988) Diversity among beta-tubulins: a carboxy-terminal domain of yeast beta-tubulin is not essential in vivo. Mol Cell Biol 8(7):2730-6

Reference Help

Abstract


Sequences of genes for beta-tubulins from many different organisms demonstrate that they encode highly conserved proteins but that these proteins diverge considerably at their carboxyl termini. The patterns of interspecies conservation of this diversity suggest that it may have functional significance. We have taken advantage of the properties of Saccharomyces cerevisiae to test this hypothesis in vivo. The sole beta-tubulin gene of this species is one of the most divergent of all beta-tubulins and encodes 12 amino acids which extend past the end of most other beta-tubulin molecules. We have constructed strains in which the only beta-tubulin gene is an allele lacking these 12 codons. We show here that this carboxy-terminal extension is not essential. The absence of these 12 amino acids had no effect on a number of microtubule-dependent functions, such as mitotic and meiotic division and mating. It did confer dominant supersensitivity to a microtubule-depolymerizing drug.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Katz WS, Solomon F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference