Reference: Keeling PJ and Doolittle WF (1996) Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13(10):1297-305

Reference Help

Abstract


The tubulin gene family, which includes alpha-,beta-, and gamma-tubulin subfamilies, is composed of highly conserved proteins which are the principle structural and functional components of eukaryotic microtubules. We are interested in (1) establishing when in eukaryotic evolution the duplications leading to paralogous alpha, beta, and gamma subfamilies occurred and (2) the possible utility of tubulin sequences in reconstructing organismal phylogeny. To broaden the taxonomic representation of alpha-tubulins so that it roughly equals that of beta-tubulins, alpha-tubulin genes from three Microsporidia (Encephalitozoon hellem, Nosema locustae, and Spraguea lophii), two Parabasalia (Monocercomonas sp. and Trichomitus batrachorum), and one Heterolobosean (Acrasis rosea) were sequenced. With these new genes, phylogenetic trees of alpha- and beta-tubulins were constructed and compared. Trees were congruent with each other, but incongruent with other molecular phylogenies. The agreement between alpha- and beta-tubulin trees could arise by the co-adaptation of one molecule to variants of the other as a result of their intimate steric association in microtubules. Thus, these trees may not be providing independent support for the phylogenetic results. However, one of these unexpected results, that microsporidia cluster with fungi, is supported by other circumstantial evidence, and may therefore reflect a real relationship despite the basal position usually assigned to microsporidia. Relationships between the three tubulins were also examined by constructing trees of all three types. These trees were found to be of limited value for determining the position of the root within each subfamily because of the great interfamily distances, but they do confirm the classification of all known genes into three monophyletic subfamilies. Divergent genes from Caenorhabditis elegans and Saccharomyces cerevisiae that have been proposed to represent the novel classes delta- and epsilon-tubulin were found to be specifically related to gamma-tubulins from animals and fungi respectively, and therefore are best seen as rapidly evolving orthologues of gamma-tubulin.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Keeling PJ, Doolittle WF
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference