Reference: Dougherty CA, et al. (1998) Detection of GTP and Pi in wild-type and mutated yeast microtubules: implications for the role of the GTP/GDP-Pi cap in microtubule dynamics. Biochemistry 37(31):10861-5

Reference Help

Abstract


Microtubule dynamics are believed to be controlled by a stabilizing cap of tubulin dimers at microtubule ends that contain either GTP or GDP and Pi in the exchangeable nucleotide site (E-site) of the beta-subunit. However, it has been difficult to obtain convincing evidence to support this hypothesis because the quantity of GTP and Pi in the E-site of assembled brain tubulin (the tubulin used in most studies thus far) is extremely low. In this study, we have measured the amount of GTP and Pi in the E-site of wild-type and mutated yeast assembled tubulins. In contrast to brain microtubules, 6% of the tubulin in a wild-type yeast microtubule contains a combination of E-site GTP and Pi. This result indicates that GTP hydrolysis and Pi release are not coupled to dimer addition to the end of the microtubule and supports the hypothesis that microtubules containa cap of tubulin dimers with GTP or Pi in their E-sites. In addition, we have measured the E-site content of GTP and Pi in microtubules assembled from two yeast tubulins that had been mutated at residues T107 and T143 in beta-tubulin, sites thought to interact with the nucleotide bound in the E-site. Previous studies have shown that microtubules containing these mutated tubulins have modified dynamic behavior in vitro. The results from these experiments indicate that the GTP or GDP-Pi cap model does not adequately explain yeast microtubule dynamic behavior.

Reference Type
Journal Article
Authors
Dougherty CA, Himes RH, Wilson L, Farrell KW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference