Reference: Lopez S, et al. (2001) High-mobility-group proteins NHP6A and NHP6B participate in activation of the RNA polymerase III SNR6 gene. Mol Cell Biol 21(9):3096-104

Reference Help

Abstract


Transcription of yeast class III genes involves the formation of a transcription initiation complex that comprises RNA polymerase III (Pol III) and the general transcription factors TFIIIB and TFIIIC. Using a genetic screen for positive regulators able to compensate for a deficiency in a promoter element of the SNR6 gene, we isolated the NHP6A and NHP6B genes. Here we show that the high-mobility-group proteins NHP6A and NHP6B are required for the efficient transcription of the SNR6 gene both in vivo and in vitro. The transcripts of wild-type and promoter-defective SNR6 genes decreased or became undetectable in an nhp6ADelta nhp6BDelta double-mutant strain, and the protection over the TATA box of the wild-type SNR6 gene was lost in nhp6ADelta nhp6BDelta cells at 37 degrees C. In vitro, NHP6B specifically stimulated the transcription of SNR6 templates up to fivefold in transcription assays using either cell nuclear extracts from nhp6ADelta nhp6BDelta cells or reconstituted transcription systems. Finally, NHP6B activated SNR6 transcription in a TFIIIC-independent assay. These results indicate that besides the general transcription factors TFIIIB and TFIIIC, additional auxillary factors are required for the optimal transcription of at least some specific Pol III genes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lopez S, Livingstone-Zatchej M, Jourdain S, Thoma F, Sentenac A, Marsolier MC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference