Reference: Thual C, et al. (2001) Stability, folding, dimerization, and assembly properties of the yeast prion Ure2p. Biochemistry 40(6):1764-73

Reference Help

Abstract


The [URE3] factor of Saccharomyces cerevisiae propagates by a prion-like mechanism and corresponds to the loss of the function of the cellular protein Ure2. The molecular basis of the propagation of this phenotype is unknown. We recently expressed Ure2p in Escherichia coli and demonstrated that the N-terminal region of the protein is flexible and unstructured, while its C-terminal region is compactly folded. Ure2p oligomerizes in solution to form mainly dimers that assemble into fibrils [Thual et al. (1999) J. Biol. Chem. 274, 13666-13674]. To determine the role played by each domain of Ure2p in the overall properties of the protein, specifically, its stability, conformation, and capacity to assemble into fibrils, we have further analyzed the properties of Ure2p N- and C-terminal regions. We show here that Ure2p dimerizes through its C-terminal region. We also show that the N-terminal region is essential for directing the assembly of the protein into a particular pathway that yields amyloid fibrils. A full-length Ure2p variant that possesses an additional tryptophan residue in its N-terminal moiety was generated to follow conformational changes affecting this domain. Comparison of the overall conformation, folding, and unfolding properties, and the behavior upon proteolytic treatments of full-length Ure2p, Ure2pW37 variant, and Ure2p C-terminal fragment reveals that Ure2p N-terminal domain confers no additional stability to the protein. This study reveals the existence of a stable unfolding intermediate of Ure2p under conditions where the protein assembles into amyloid fibrils. Our results contradict the intramolecular interaction between the N- and C-terminal moieties of Ure2p and the single unfolding transitions reported in a number of previous studies.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Thual C, Bousset L, Komar AA, Walter S, Buchner J, Cullin C, Melki R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference