Reference: Escobar-Henriques M and Daignan-Fornier B (2001) Transcriptional regulation of the yeast gmp synthesis pathway by its end products. J Biol Chem 276(2):1523-30

Reference Help

Abstract

AMP and GMP are synthesized from IMP by specific conserved pathways. In yeast, whereas IMP and AMP synthesis are coregulated, we found that the GMP synthesis pathway is specifically regulated. Transcription of the IMD genes, encoding the yeast homologs of IMP dehydrogenase, was repressed by extracellular guanine. Only this first step of GDP synthesis pathway is regulated, since the latter steps, encoded by the GUA1 and GUK1 genes, are guanine-insensitive. Use of mutants affecting GDP metabolism revealed that guanine had to be transformed into GDP to allow repression of the IMD genes. IMD gene transcription was also strongly activated by mycophenolic acid (MPA), a specific inhibitor of IMP dehydrogenase activity. Serial deletions of the IMD2 gene promoter revealed the presence of a negative cis-element, required for guanine regulation. Point mutations in this guanine response element strongly enhanced IMD2 expression, also making it insensitive to guanine and MPA. From these data, we propose that the guanine response element sequence mediates a repression process, which is enhanced by guanine addition, through GDP or a GDP derivative, and abolished in the presence of MPA.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Escobar-Henriques M, Daignan-Fornier B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference