Reference: Lenk U and Sommer T (2000) Ubiquitin-mediated proteolysis of a short-lived regulatory protein depends on its cellular localization. J Biol Chem 275(50):39403-10

Reference Help

Abstract


In this study we demonstrate that the Deg1 degradation signal of the transcriptional repressor Matalpha2 confers compartment-specific turnover to a reporter protein. Rapid degradation of a Deg1-containing fusion protein is observed only when the reporter is efficiently imported into the nucleus. In contrast, a reporter that is constantly exported from the nucleus exhibits an extended half-life. Furthermore, nuclear import functions are crucial for both Deg1-induced degradation as well as for the turnover of the endogenous Matalpha2 protein. The conjugation of ubiquitin to a Deg1-containing reporter protein is abrogated in mutants affected in nuclear import. Obviously, the Deg1 signal initiates rapid proteolysis within the nucleoplasm, whereas in the cytosol it mediates turnover via a slower pathway. In both pathways the ubiquitin-conjugating enzymes Ubc6p/Ubc7p play a pivotal role. These observations imply that both the cellular targeting of a substrate and the compartment-specific activity of components of the ubiquitin-proteasome system define the half-life of naturally short-lived proteins.

Reference Type
Journal Article
Authors
Lenk U, Sommer T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference