Take our Survey

Reference: Swerdlow H and Guthrie C (1984) Structure of intron-containing tRNA precursors. Analysis of solution conformation using chemical and enzymatic probes. J Biol Chem 259(8):5197-207

Reference Help

Abstract

Using chemical and enzymatic structure-specific probes adapted to rapid gel sequencing techniques, we have analyzed the solution conformations of precursors to two yeast tRNAs which contain an intervening sequence, pre-tRNAPhe and pre-tRNATyr. Interpretation of the data was greatly facilitated by performing direct mature/precursor tRNA comparisons. In addition, the effects of tertiary interactions on probe specificity could be evaluated from the results obtained with mature tRNAPhe, whose crystal structure is known. We find: 1) the folding of the precursor CCA terminus, acceptor stem, T psi C stem, variable loop, anticodon stem, and D stem identical with that of the equivalent regions in the cognate, mature tRNA. 2) The T psi C loop and D loop appear to vary slightly in tertiary structure between mature and precursor species. 3) The precursors contain a helix involving the anticodon triplet and a complementary sequence in the intron. 4) The stability of this helix is much greater for pre-tRNAPhe than for pre-tRNATyr. 5) The splice sites for both precursors are located in single-stranded loops. These results bear out predictions based on genetic analyses and are consistent with the view that recognition of universally conserved features of tRNA structure allows all tRNA precursors containing intervening sequences to be processed by a single splicing apparatus.

Reference Type
Journal Article
Authors
Swerdlow H, Guthrie C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference