Take our Survey

Reference: Gavin IM, et al. (2000) Tup1p represses Mcm1p transcriptional activation and chromatin remodeling of an a-cell-specific gene. EMBO J 19(21):5875-83

Reference Help

Abstract


In yeast, a number of regulatory proteins expressed only in specific cell types interact with general transcription factors in a combinatorial manner to control expression of cell-type-specific genes. We report a detailed analysis of activation and repression events that occur at the promoter of the a-cell-specific STE6 gene fused to a beta-galactosidase gene in a yeast minichromosome, as well as factors that control the chromatin structure of this promoter both in the minichromosome and in the genomic STE6 locus. Mcm1p results in chromatin remodeling and is responsible for all transcriptional activity from the STE6 promoter in both wild-type a and alpha cells. Matalpha2p cooperates with Tup1p to block both chromatin remodeling and Mcm1p-associated activation. While Matalpha2p represses only Mcm1p, the Tup1p-mediated repression involves both Mcm1p-dependent and -independent mechanisms. Swi/Snf and Gcn5p, required for full induction of the STE6 gene, do not contribute to chromatin remodeling. We suggest that Tup1p can contribute to repression by blocking transcriptional activators, in addition to interacting with transcription machinery and stabilizing chromatin.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Gavin IM, Kladde MP, Simpson RT
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference