Take our Survey

Reference: de Jong L, et al. (2000) Increased synthesis and decreased stability of mitochondrial translation products in yeast as a result of loss of mitochondrial (NAD(+))-dependent isocitrate dehydrogenase. FEBS Lett 483(1):62-6

Reference Help

Abstract

We have previously demonstrated that the yeast Krebs cycle enzyme NAD(+)-dependent isocitrate dehydrogenase (Idh) binds specifically and with high affinity to the 5'-untranslated leader sequences of mitochondrial mRNAs in vitro and have proposed a role for the enzyme in the regulation of mitochondrial translation [Elzinga, S.D.J. et al. (2000) Curr. Genet., in press]. Although our studies initially failed to reveal any consistent correlation between idh disruption and mitochondrial translational activity, it is now apparent that compensatory extragenic suppressor mutations readily accumulate in idh disruption strains thereby masking mutant behaviour. Now, pulse-chase protein labelling of isolated mitochondria from an Idh disruption mutant lacking suppressor mutations reveals a strong (2-3-fold) increase in the synthesis of mitochondrial translation products. Strikingly, the newly synthesised proteins are more short-lived than in mitochondria from wild-type cells, their degradation occurring with a 2-3-fold reduced half-life. Enhanced degradation of translation products is also a feature of yeast mutants in which tethering/docking of mitochondrial mRNAs is disturbed. We therefore suggest that binding of Idh to mitochondrial mRNAs may suppress inappropriate translation of mitochondrial mRNAs.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
de Jong L, Elzinga SD, McCammon MT, Grivell LA, van der Spek H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference