Take our Survey

Reference: Grant AM, et al. (2001) NBD-labeled phosphatidylcholine and phosphatidylethanolamine are internalized by transbilayer transport across the yeast plasma membrane. Traffic 2(1):37-50

Reference Help

Abstract

The internalization and distribution of fluorescent analogs of phosphatidylcholine (M-C6-NBD-PC) and phosphatidylethanolamine (M-C6-NBD-PE) were studied in Saccharomyces cerevisiae. At normal growth temperatures, M-C6-NBD-PC was internalized predominantly to the vacuole and degraded. M-C6-NBD-PE was internalized to the nuclear envelope/ER and mitochondria, was not transported to the vacuole, and was not degraded. At 2 degrees C, both were internalized to the nuclear envelope/ER and mitochondria by an energy-dependent, N-ethylmaleimide-sensitive process, and transport of M-C6-NBD-PC to and degradation in the vacuole was blocked. Internalization of neither phospholipid was reduced in the endocytosis-defective mutant, end4-1. However, following pre-incubation at 37 degrees C, internalization of both phospholipids was inhibited at 2 degrees C and 37 degrees C in sec mutants defective in vesicular traffic. The sec18/NSF mutation was unique among the sec mutations in further blocking M-C6-NBD-PC translocation to the vacuole suggesting a dependence on membrane fusion. Based on these and previous observations, we propose that M-C6-NBD-PC and M-C6-NBD-PE are transported across the plasma membrane to the cytosolic leaflet by a protein-mediated, energy-dependent mechanism. From the cytosolic leaflet, both phospholipids are spontaneously distributed to the nuclear envelope/ER and mitochondria. Subsequently, M-C6-NBD-PC, but not M-C6-NBD-PE, is sorted by vesicular transport to the vacuole where it is degraded by lumenal hydrolases.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Grant AM, Hanson PK, Malone L, Wylie Nichols J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference