Reference: Tanida I, et al. (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276(3):1701-6

Reference Help

Abstract


Autophagy is a process that involves the bulk degradation of cytoplasmic components by the lysosomal/vacuolar system. In the yeast, Saccharomyces cerevisiae, an autophagosome is formed in the cytosol. The outer membrane of the autophagosome is fused with the vacuole, releasing the inner membrane structure, an autophagic body, into the vacuole. The autophagic body is subsequently degraded by vacuolar hydrolases. Taking advantage of yeast genetics, apg (autophagy-defective) mutants were isolated that are defective in terms of formation of autophagic bodies under nutrient starvation conditions. One of the APG gene products, Apg12p, is covalently attached to Apg5p via the C-terminal Gly of Apg12p as in the case of ubiquitylation, and this conjugation is essential for autophagy. Apg7p is a novel E1 enzyme essential for the Apg12p-conjugation system. In mammalian cells, the human Apg12p homolog (hApg12p) also conjugates with the human Apg5p homolog. In this study, the unique characteristics of hApg7p are shown. A two-hybrid experiment indicated that hApg12p interacts with hApg7p. Site-directed mutagenesis revealed that Cys(572) of hApg7p is an authentic active site cysteine residue essential for the formation of the hApg7p.hApg12p intermediate. Overexpression of hApg7p enhances the formation of the hApg5p.hApg12p conjugate, indicating that hApg7p is an E1-like enzyme essential for the hApg12p conjugation system. Cross-linking experiments and glycerol-gradient centrifugation analysis showed that the mammalian Apg7p homolog forms a homodimer as in yeast Apg7p. Each of three human Apg8p counterparts, i.e. the Golgi-associated ATPase enhancer of 16 kDa, GABA(A) receptor-associated protein, and microtubule-associated protein light chain 3, coimmunoprecipitates with hApg7p and conjugates with mutant hApg7p(C572S) to form a stable intermediate via an ester bond. These results indicate that hApg7p is an authentic protein-activating enzyme for hApg12p and the three Apg8p homologs.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tanida I, Tanida-Miyake E, Ueno T, Kominami E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference