Reference: Zhu X, et al. (2000) MSI1 suppresses hyperactive RAS via the cAMP-dependent protein kinase and independently of chromatin assembly factor-1. Curr Genet 38(2):60-70

Reference Help

Abstract


RAS hyperactivation in the yeast Saccharomyces cerevisiae leads to multiple nutritional growth defects associated with overstimulation of the cAMP signaling pathway. Hyperactive RAS can be suppressed by overexpression of MSI1, a subunit of chromatin assembly factor-1 (yCAF-1). MSI1 overexpression suppresses phenotypes induced by increased cAMP content in multiple genetic backgrounds. However, MSI1 does not inhibit cAMP synthesis or total cellular cAMP-dependent protein kinase (PKA) activity, nor does MSI1 stimulate expression of several cAMP-repressible genes critical for the acquisition of thermotolerance in the stationary phase. Our analysis indicates that yCAF-1 is dispensable for inhibition of hyperactive RAS by MSI1. We demonstrate that in the presence of the PKA regulatory subunit, BCY1, MSI1 inhibits phenotypes of a mutationally activated PKA catalytic subunit. These observations indicate that MSI1 affects PKA function in a BCY1-dependent manner via mechanisms other than direct overall inhibition of PKA catalytic activity. MSI1 appears to provide two distinct roles in chromatin modeling as a component of yCAF-1, and in the inhibition of RAS signaling by modulating PKA.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Zhu X, Demolis N, Jacquet M, Michaeli T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference