Take our Survey

Reference: Costenoble R, et al. (2000) Microaerobic glycerol formation in Saccharomyces cerevisiae. Yeast 16(16):1483-95

Reference Help

Abstract


The yeast Saccharomyces cerevisiae produces large amounts of glycerol as an osmoregulator during hyperosmotic stress and as a redox sink at low oxygen availability. NAD(+)-dependent glycerol-3-phosphate dehydrogenase in S. cerevisiae is present in two isoforms, coded for by two different genes, GPD1 and GPD2. Mutants for either one or both of these genes were investigated under carefully controlled static and dynamic conditions in continuous cultures at low oxygen transfer rates. Our results show that S. cerevisiae controls the production of glycerol in response to hypoxic conditions by regulating the expression of several genes. At high demand for NADH reoxidation, a strong induction was seen not only of the GPD2 gene, but also of GPP1, encoding one of the molecular forms of glycerol-3-phosphatase. Induction of the GPP1 gene appears to play a decisive role at elevated growth rates. At low demand for NADH reoxidation via glycerol formation, the GPD1, GPD2, GPP1, and GPP2 genes were all expressed at basal levels. The dynamics of the gene induction and the glycerol formation at low demand for NADH reoxidation point to an important role of the Gpd1p; deletion of the GPD1 gene strongly altered the expression patterns of the GPD2 and GPP1 genes under such conditions. Furthermore, our results indicate that GCY1 and DAK1, tentatively encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, may be involved in the redox regulation of S. cerevisiae.

Reference Type
Journal Article
Authors
Costenoble R, Valadi H, Gustafsson L, Niklasson C, Johan Franzen C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference