Reference: Sudoh M, et al. (2000) Identification of a novel inhibitor specific to the fungal chitin synthase. Inhibition of chitin synthase 1 arrests the cell growth, but inhibition of chitin synthase 1 and 2 is lethal in the pathogenic fungus Candida albicans. J Biol Chem 275(42):32901-5

Reference Help

Abstract

As in Saccharomyces cerevisiae, the pathogenic fungus Candida albicans harbors three chitin synthases called CaChs1p, CaChs2p, and CaChs3p, which are structurally and functionally analogous to the S. cerevisiae ScChs2p, ScChs1p, and ScChs3p, respectively. In S. cerevisiae, ScCHS1, ScCHS2, and ScCHS3 are all non-essential genes; only the simultaneous disruption of ScCHS2 and ScCHS3 is lethal. The fact that a null mutation of the CaCHS1 is impossible, however, implies that CaCHS1 is required for the viability of C. albicans. To gain more insight into the physiological importance of CaCHS1, we identified and characterized a novel inhibitor that was highly specific to CaChs1p. RO-09-3143 inhibited CaChs1p with a K(i) value of 0.55 nm in a manner that was non-competitive to the substrate UDP-N-acetylglucosamine. RO-09-3143 also hampered the growth of the C. albicans cells with an MIC(50) value of 0.27 microm. In the presence of RO-09-3143, the C. albicans cells failed to form septa and displayed an aberrant morphology, confirming the involvement of the C. albicans Chs1p in septum formation. Although the effect of RO-09-3143 on the wild-type C. albicans was fungistatic, it caused cell death in the cachs2Delta null mutants but not in the cachs3Delta null mutants. Thus, it appears that in C. albicans, inhibition of CaChs1p causes cell growth arrest, but simultaneous inhibition of CaChs1p and CaChs2p is lethal.

Reference Type
Journal Article
Authors
Sudoh M, Yamazaki T, Masubuchi K, Taniguchi M, Shimma N, Arisawa M, Yamada-Okabe H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference