Reference: Sasaki T, et al. (2000) Yeast Krr1p physically and functionally interacts with a novel essential Kri1p, and both proteins are required for 40S ribosome biogenesis in the nucleolus. Mol Cell Biol 20(21):7971-9

Reference Help

Abstract


Using a two-hybrid screening with TOM1, a putative ubiquitin-ligase gene of Saccharomyces cerevisiae, we isolated KRR1, a homologue of human HRB2 (for human immunodeficiency virus type 1 Rev-binding protein 2). To characterize the gene function, we constructed temperature-sensitive krr1 mutants and isolated two multicopy suppressors. One suppressor is RPS14A, encoding a 40S ribosomal protein. The C-terminal-truncated rpS14p, which was reported to have diminished binding activity to 18S rRNA, failed to suppress the krr1 mutant. The other suppressor is a novel gene, KRI1 (for KRR1 interacting protein; YNL308c). KRI1 is essential for viability, and Kri1p is localized to the nucleolus. We constructed a galactose-dependent kri1 strain by placing KRI1 under control of the GAL1 promoter, so that expression of KRI1 was shut off when transferring the culture to glucose medium. Polysome and 40S ribosome fractions were severely decreased in the krr1 mutant and Kri1p-depleted cells. Pulse-chase analysis of newly synthesized rRNAs demonstrated that 18S rRNA is not produced in either mutant. However, wild-type levels of 25S rRNA are made in either mutant. Northern analysis revealed that the steady-state levels of 18S rRNA and 20S pre-rRNAs were reduced in both mutants. Precursors for 18S rRNA were detected but probably very unstable in both mutants. A myc-tagged Kri1p coimmunoprecipitated with a hemagglutinin-tagged Krr1p. Furthermore, the krr1 mutant protein was defective in its interaction with Kri1p. These data lead us to conclude that Krr1p physically and functionally interacts with Kri1p to form a complex which is required for 40S ribosome biogenesis in the nucleolus.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Sasaki T, Toh-E A, Kikuchi Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference